Энергетические масла

Турбинные масла
Турбинные масла предназначены для смазывания и охлаждения подшипников различных турбоагрегатов: паровых и газовых турбин, гидротурбин, турбокомпрессорных машин. Эти же масла используют в качестве рабочих жидкостей в системах регулирования турбоагрегатов, а также в циркуляционных и гидравлических системах различных промышленных механизмов.Несмотря на различия в условиях применения автомобильные и авиационные бензины характеризуются в основном общими показателями качества, определяющими их физико-химические и эксплуатационные свойства.

Общие требования и свойства

Турбинные масла должны обладать хорошей стабильностью против окисления, не выделять при длительной работе осадков, не образовывать стойкой эмульсии с водой, которая может проникать в смазочную систему при эксплуатации, защищать поверхность стальных деталей от коррозионного воздействия. Перечисленные эксплуатационные свойства достигаются использованием высококачественных нефтей, применением глубокой очистки при переработке и введением композиций присадок, улучшающих антиокислительные, деэмульгирующие, антикоррозионные, а в некоторых случаях противоизносные свойства масел.

Согласно правилам технической эксплуатации электрических станций и сетей Российской Федерации (РД 34.20.501-95 РАО «ЕЭС России») нефтяное турбинное масло в паровых турбинах, питательных электро- и турбонасосах должно удовлетворять следующим нормам: кислотное число не более 0,3 мг КОН/г; отсутствие воды, видимого шлама и механических примесей; отсутствие растворенного шлама; показатели масла после окисления по методу ГОСТ 981-75: кислотное число не более 0,8 мг КОН/г, массовая доля осадка не более 0,15 %.

В то же время согласно инструкции по эксплуатации нефтяных турбинных масел (РД 34.43.102-96 РАО «ЕЭС России»), применяемых в паровых турбинах, масла Тп-22С и Тп-22Б с кислотным числом более 0,15 мг КОН/г, содержащие нерастворимый шлам и (или) имеющие кислотное число после окисления более 0,6 мг КОН/г и содержание осадка более 0,15 %, подлежат замене. Ста6ильность по методу ГОСТ 981-75 определяют при температуре 120 °С, длительности 14 ч, расходе кислорода 200 мл/мин. При кислотном числе эксплуатационных масел 0,1-0,15 мг КОН/г, появлении в них растворенного шлама, кислотном числе после окисления более 0,2 мг КОН/г и появлении в масле после окисления следов осадка инструкцией по эксплуатации предлагается ряд мероприятий по продлению срока службы масел путем введения антиокислительной присадки.

Инструкция по эксплуатации предусматривает также контроль за противоржавейными свойствами масла по состоянию помещенных в маслобак паровых турбин индикаторов коррозии. При появлении коррозии в масло рекомендуется ввести противоржавейную присадку. Масло Тп-30 при применении в гидротурбинах должно удовлетворять нормам: кислотное число не более 0,6 мг КОН/г; отсутствие воды, шлама и механических примесей; содержание растворенного шлама не более 0,01 %. При снижении кислотного числа эксплуатационного масла Тп-30 до 0,1 мг КОН/г и последующем его увеличении масло подлежит усиленному контролю с целью проведения своевременных мер по продлению его срока службы путем введения антиокислителя и (или) удаления из него шлама. При невозможности восстановления стабильности масла оно подлежит замене по достижении предельных показателей качества.

Ассортимент турбинных масел

Масло Тп-22С (ТУ 38.101821-83) вырабатывают из сернистых парафинистых нефтей с применением очистки селективными растворителями. Содержит присадки, улучшающие антиокислительные, антикоррозионные и деэмульгирующие свойства. Предназначено для высокооборотных паровых турбин, а также центробежных и турбокомпрессоров в тех случаях, когда вязкость масла обеспечивает необходимые противоизносные свойства. Является наиболее распространенным турбинным маслом (см. таблицу).

Масло Тп-22Б (ТУ 38.401-58-48-92) вырабатывают из парафинистых нефтей с применением очистки селективными растворителями. Содержит присадки, улучшающие антиокислительные, антикоррозионные и деэмульгирующие свойства. По сравнению с маслом Тп-22С обладает усиленными антиокислительными свойствами, большим сроком службы, меньшей склонностью к осадкообразованию при работе в оборудовании. Не имеет заменителей среди отечественных сортов турбинных масел при применении в турбокомпрессорах крупных производств аммиака (см. таблицу).

Масла Тп-30 и Тп-46 (ГОСТ 9972-74) вырабатывают из парафинистых нефтей с применением очистки селективным растворителем. Содержат присадки, улучшающие антиокислительные, антикоррозионные и другие свойства масел. Масло Тп-30 применяют для гидротурбин, некоторых турбо- и центробежных компрессоров. Масло Тп-46 применяют для судовых паросиловых установок с тяжелонагруженными редукторами и вспомогательных механизмов (см. таблицу).

Масла Т22, Т30, Т46, Т57 (ГОСТ 32-74) вырабатывают из высококачественных малосернистых беспарафинистых бакинских нефтей путем кислотной очистки. Необходимые эксплуатационные свойства масел достигаются выбором сырья и оптимальной глубиной очистки. Различаются вязкостью и областями применения. Эти масла не содержат присадок. На рынок России поступают в весьма ограниченном количестве.

Масло Т22 имеет те же области применения, что и масла Тп-22С и ТП-22Б.
Масло Т30 используют для гидротурбин, низкооборотных паровых турбин, турбо- и центробежных компрессоров, работающих с высокооборотными нагруженными редукторами.

Масло Т46 применяют в судовых паротурбинных установках (турбозубчатых агрегатах) и других вспомогательных судовых механизмах с гидроприводом.

Характеристики турбинных масел

Показатели

Тп-22С

Тп-22Б

Тп-30

Тп-46

Т22

Т30

Т46

Т57

Кинематическая вязкость, мм2/с, при температуре:
50 °С

20-23

20-23

28-32

44-48

55-59

40 °С

28,8-35,2

28,8-35,2

41,4-50,6

61,2-74,8

Индекс вязкости, не менее

90

95

95

90

70

65

60

70

Кислотное число, мг КОН/г, не более

0,07

0,07

0,5

0,5

0,02

0,02

0,02

0,05

Температура, °С:
вспышки в открытом тигле, не ниже

186

185

190

220

180

180

195

195

застывания, не выше

-15

-15

-10

-10

-15

-10

-10

Массовая доля:
водорастворимых кислот и щелочей

Отсутствие

Отсутствие

механических примесей

Отсутствие

фенола

Отсутствие

серы, %, не более

0,5

0,4

0,8

1,1

Стабильность против окисления, не более:
осадок, % (мас. доля)

0,005

0,01

0,01

0,008

0,100

0,100

0,100

летучие низкомолекулярные кислоты, мг КОН/г

0,02

0,15

кислотное число, мг КОН/г

0,1

0,15

0,5

0,7

0,35

0,35

0,35

Стабильность против окисления в универсальном приборе, не более:
осадок, % (мас. доля)

0,03

0,10

кислотное число, мг КОН/г

0,4

1,5

Зольность базового масла, %, не более

0,005

0,005

0,005

0,005

0,010

0,030

Число деэмульсации, с, не более

180

180

210

180

300

300

300

300

Коррозия на стальном стержне

Отсутствие

Коррозия на медной пластинке, группа

1

1

Отсутствие

Цвет, ед. ЦНТ, не более

2,5

2,0

3,5

5,5

2,0

2,5

3,0

4,5

Плотность при 20°С, кг/м3, не более

900

895

895

900

900

905

900

Трансформаторные масла

Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогасящей среды.

Общие требования и свойства

Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок.

Наиболее важное свойство трансформаторных масел — стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой — 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.

В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).

На рисунке показана зависимость длительности индукционного периода окисления трансформаторного масла при одной и той же концентрации присадки от содержания в нем ароматических углеводородов. Окисление проводилось в аппарате, регистрирующем количество поглощаемого маслом кислорода при 130 °С в присутствии катализатора (медной проволоки) в количестве 1 см2 поверхности на 1 г масла с окисляющим газом (кислородом) в статических условиях. Происходящее при очистке нефтяных дистиллятов снижение содержания ароматических углеводородов, как и удаление неуглеводородных включений, повышает стабильность ингибированного ионолом трансформаторного масла.

Международная электротехническая комиссия разработала стандарт (Публикация 296) «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей». Стандарт предусматривает три класса трансформаторных масел:I — для южных районов (с температурой застывания не выше -30 °С),

II — для северных районов (с температурой застывания не выше -45 °С),

III — для арктических районов (с температурой застывания -60 °С).

Буква А в обозначении класса указывает на то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.

Трансформаторные масла работают в сравнительно «мягких» условиях. Температура верхних слоев масла в трансформаторах при кратковременных перегрузках не должна превышать 95 °С. Многие трансформаторы оборудованы пленочными диафрагмами или азотной защитой, изолирующими масло от кислорода воздуха. Образующиеся при окислении некоторые продукты (например, гидроперекиси, мыла металлов) являются сильными промоторами окисления масла. При удалении продуктов окисления срок службы масла увеличивается во много раз. Этой цели служат адсорберы, заполненные силикагелем, подключаемые к трансформаторам при эксплуатации. Срок службы трансформаторных масел в значительной мере зависит также от использования в оборудовании материалов, совместимых с маслом, т. е. не ускоряющих его старение и не содержащих нежелательных примесей. Для высококачественных сортов трансформаторных масел срок службы без замены может составлять 20-25 лет и более.

Перед заполнением электроаппаратов масло подвергают глубокой термовакуумной обработке. Согласно действующему РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» концентрация воздуха в масле, заливаемом в трансформаторы с пленочной или азотной защитой, герметичные вводы и герметичные измерительные трансформаторы не должна превышать 0,5 % (при определении методом газовой хроматографии), а содержание воды 0,001 % (мас. доля). В силовые трансформаторы без пленочной защиты и негерметичные вводы допускается заливать масло с содержанием воды 0,0025 % (мас. доля). Содержание механических примесей, определяемое как класс чистоты, не должно быть хуже 11-го для оборудования напряжением до 220 кВ и хуже 9-го для оборудования напряжением выше 220 кВ. При этом показатели пробивного напряжения в зависимости от рабочего напряжения оборудования должны быть равны (кВ):

Рабочее напряжение оборудования

Пробивное напряжение масла

До 15 (вкл.)

30

Св. 15 до 35 (вкл.)

35

От 60 до 150 (вкл.)

55

От 220 до 500 (вкл.)

60

750

65

Непосредственно после заливки масла в оборудование допустимые значения пробивного напряжения на 5 кВ ниже, чем у масла до заливки. Допускается ухудшение класса чистоты на единицу и увеличение содержания воздуха на 0,5 %.

В этом же РД указаны значения показателей масла, по которым состояние эксплуатационного масла оценивается как нормальное. При превышении этих значений должны быть приняты меры по восстановлению масла или устранению причины ухудшения показателя.

Помимо этого даны значения показателей, при которых масло подлежит замене. В табл. 5.4 приведены требования к эксплуатационным маслам. Сорбенты в термосифонных и адсорбционных фильтрах трансформаторов согласно РД 34.20.501-95 «Правила технической эксплуатации электрических станций и сетей Российской Федерации» следует заменять в трансформаторах мощностью свыше 630 кВ·А при кислотном числе масла более 0,1 мг КОН/г, а также при появлении в масле растворенного шлама, водорастворимых кислот и (или) повышении тангенса угла диэлектрических потерь выше эксплуатационной нормы. В трансформаторах мощностью до 630 кВ·А адсорбенты в фильтрах заменяют во время ремонта или при эксплуатации при ухудшении характеристик твердой изоляции. Содержание влаги в сорбенте перед загрузкой в фильтры не должно превышать 0,5 %.

Ассортимент трансформаторных масел

Нефтеперерабатывающая промышленность выпускает несколько сортов трансформаторных масел (таблица). Они различаются по используемому сырью и способу получения.

Масло ТКп (ТУ 38.101890-81) вырабатывают из малосернистых нафтеновых нефтей методом кислотно-щелочной очистки. Содержит присадку ионол. Рекомендуемая область применения — оборудование напряжением до 500 кВ включительно.

Масло селективной очистки (ГОСТ 10121-76) производят из сернистых парафинистых нефтей методом фенольной очистки с последующей низкотемпературной депарафинизацией; содержит присадку ионол. Рекомендуемая область применения — оборудование напряжением до 220 кВ включительно.

Масло Т-1500У (ТУ 38.401-58-107-97) вырабатывают из сернистых парафинистых нефтей с использованием процессов селективной очистки и гидрирования. Содержит присадку ионол. Обладает улучшенной стабильностью против окисления, имеет невысокое содержание сернистых соединений, низкое значение тангенса угла диэлектрических потерь. Рекомендовано к применению в электрооборудовании напряжением до 500 кВ и выше.

Масло ГК (ТУ 38.1011025-85) вырабатывают из сернистых парафинистых нефтей с использованием процесса гидрокрекинга. Содержит присадку ионол. Полностью удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIА. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления и рекомендовано к применению в электрооборудовании высших классов напряжении.

Масло ВГ (ТУ 38.401978-98) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. Удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIА. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления и рекомендовано к применению в электрооборудовании высших классов напряжений.

Масло АГК (ТУ 38.1011271-89) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. По низкотемпературной вязкости и температуре вспышки является промежуточным между маслами классов IIА и IIIА стандарта МЭК 296. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления. Предназначено для применения в трансформаторах арктического исполнения.

Масло МВТ (ТУ 38.401927-92) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. Удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIIА. Обладает уникальными низкотемпературными свойствами, низким тангенсом угла диэлектрических потерь и высокой стабильностью против окисления. Рекомендовано к применению в масляных выключателях и трансформаторах арктического исполнения.

Характеристики трансформаторных масел

Показатели

ТКп

Масло селективной очистки

Т-1500У

ГК

ВГ

АГК

МВТ

Кинематическая вязкость, мм2/с, при температуре:
50 °С

9

9

9

9

5

40 °С

11

3,5

20 °С

28

-30 °С

1500

1300

1300

1200

1200

-40 °С

800

150

Кислотное число, мг КОН/г, не более

0,02

0,02

0,01

0,01

0,01

0,01

0,02

Температура, °С:
вспышки в закрытом тигле, не ниже

135

150

135

135

135

125

95

застывания, не выше

-45

-45

-45

-45

-45

-60

-65

Содержание:
водорастворимых кислот и щелочей

Отсутствие

механических примесей

Отсутствие

Отсутствие

Отсутствие

фенола

Отсутствие

серы, % (мас. доля)

0,6

0,3

сульфирующихся веществ, % (об.), не более

10

Стабильность, показатели после окисления, не более:
осадок, % (мас. доля)

0,01

Отсутствие

0,015

0,015

Отсутствие

летучие низкомолекулярные кислоты мг КОН/г

0,005

0,005

0,05

0,04

0,04

0,04

0,04

кислотное число, мг КОН/г

0,1

0,1

0,2

0,1

0,1

0,1

0,1

Стабильность по методу МЭК, индукционный период, ч, не менее

150

120

150

150

Прозрачность

Прозрачно

при 5 °С

при 20 °С

Тангенс угла диэлектрических потерь при 90 °С, %, не более

2,2

1,7

0,5

0,5

0,5

0,5

0,5

Цвет, ед. ЦНТ, не более

1

1

1,5

1

1

1

Коррозия на медной пластинке

Выдерживает

Выдерживает

Показатель преломления, не бол ее

1,505

Плотность при 20 °С, кг/м3, не более

895

885

895

895

895

Примечание. Условия окисления при определении стабильности по методу ГОСТ 981-75:

Масло

Температура, °С

Длительность, ч

Расход кислорода, мл/мин

ТКп и масло селективной очистки

120

14

200

Т-1500У

135

30

50

ГК и АГК

155

14

50

ВГ

155

12

50


Купить моторное масло